Explicit resolutions of cubic cusp singularities

نویسنده

  • Helen G. Grundman
چکیده

Resolutions of cusp singularities are crucial to many techniques in computational number theory, and therefore finding explicit resolutions of these singularities has been the focus of a great deal of research. This paper presents an implementation of a sequence of algorithms leading to explicit resolutions of cusp singularities arising from totally real cubic number fields. As an example, the implementation is used to compute values of partial zeta functions associated to these cusps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degenerations of elliptic curves and cusp singularities

This paper gives more or less explicit equations for all twodimensional cusp singularities of embedding dimension at least 4. They are closely related to Felix Klein’s equations for universal curves with level n structure. The main technical result is a description of the versal deformation of an n-gon in P. The final section contains the equations for smoothings of simple elliptic singularitie...

متن کامل

Inflection points and singularities on planar rational cubic curve segments

We obtain the distribution of inflection points and singularities on a parametric rational cubic curve segment with aid of Mathematica (A System of for Doing Mathematics by Computer). The reciprocal numbers of the magnitudes of the end slopes determine the occurrence of inflection points and singularities on the segment. Its use enables us to check whether the segment has inflection points or a...

متن کامل

On crepant resolutions of 2-parameter series of Gorenstein cyclic quotient singularities

An immediate generalization of the classical McKay correspondence for Gorenstein quotient spaces C/G in dimensions r ≥ 4 would primarily demand the existence of projective, crepant, full desingularizations. Since this is not always possible, it is natural to ask about special classes of such quotient spaces which would satisfy the above property. In this paper we give explicit necessary and suf...

متن کامل

2 0 Ju n 20 02 Units , polyhedra , and a conjecture of Satake

Let F/Q be a totally real number field of degree n. We explicitly evaluate a certain sum of rational functions over a infinite fan of F -rational polyhedral cones in terms of the norm map N:F → Q. This completes Sczech’s combinatorial proof of Satake’s conjecture connecting the special values of L-series associated to cusp singularities with intersection numbers of divisors in their toroidal re...

متن کامل

On the (non)existence of Symplectic Resolutions of Linear Quotients

We study the existence of symplectic resolutions of quotient singularities V/G, where V is a symplectic vector space and G acts symplectically. Namely, we classify the symplectically irreducible and imprimitive groups, excluding those of the form KoS2 where K < SL2(C), for which the corresponding quotient singularity admits a projective symplectic resolution. As a consequence, for dimV 6= 4, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2000